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A numerical investigation of the disturbance amplification in a Mach 4.8 flat-plate
boundary layer with a localized two-dimensional roughness element is presented.
The height of the roughness is varied and reaches up to approximately 70 % of the
boundary-layer thickness. Simulations are based on a time-accurate integration of the
compressible Navier–Stokes equations, with a small disturbance of fixed frequency
being triggered via blowing and suction upstream of the roughness element. The
roughness element considerably alters the instability of the boundary layer, leading
to increased amplification or damping of a modal wave depending on the frequency
range. The roughness is also the source of an additional perturbation. Even though
this additional mode is stable, the interaction with the unstable mode in the form
of constructive and destructive interference behind the roughness element leads to a
beating and therefore transiently increased disturbance amplitude. Far downstream
of the roughness, the amplification rate of a flat-plate boundary layer is recovered.
Overall, the two-dimensional roughness element behaves as disturbance amplifier with
a limited bandwidth capable of filtering a range of frequencies and strongly amplifying
only a selected range.

1. Introduction
The prediction of heat loads on the surface of vehicles (re-)entering a planetary

atmosphere is important for heat-shield design. Turbulent flow induces much higher
heating in comparison to laminar flow. Therefore, the prediction of the occurrence of
laminar–turbulent transition is a key factor in defining the dimensions and materials
used for the thermal protection system. Yet, fundamental physical processes related to
laminar–turbulent transition in high-speed boundary layers are not well understood.
This is true even for the first stages of the process, that is, generation and amplification
of small-amplitude (or linear) perturbations, to which this article is restricted.
High-speed boundary layers may exhibit qualitatively different phenomena than
incompressible ones. Among these are shocklets and multiple instability mechanisms
as well as disturbance–generation mechanisms, all of which influence the disturbance
evolution.

† Email address for correspondence: olaf.marxen@stanford.edu



436 O. Marxen, G. Iaccarino and E. S. G. Shaqfeh

1.1. The unstable discrete mode(s)

1.1.1. Inviscid flow

Mack (1969, 1975) considered the linear instability of high-speed flat-plate boundary
layers theoretically. Using, at first, inviscid linear stability theory (inviscid LST) he
found several instability mechanisms. The most important ones are an instability
caused by a generalized inflection point in the boundary-layer profile and an instability
caused by an acoustic wave being trapped inside the boundary layer. The former type
of instability also exists in incompressible flow and has been labelled ‘first-mode’
instability by Mack (1969). The latter type of instability has no incompressible
counterpart, as it is due to a region of locally supersonic flow relative to the phase
velocity of the disturbance wave. This type of instability is commonly denoted as
‘second-mode’ or ‘Mack mode’ instability. Analogous to the second-mode type of
instability, there exist higher inviscid instability modes (‘third’, ‘fourth’ or just ‘higher
Mack modes’), but these are usually not considered important in practice due to small
amplification rates.

1.1.2. Viscous flow

According to Mack (1969), the similarities between viscous and inviscid flow are
sufficiently strong so that he kept the same terminology. However, Tumin (2007)
pointed out that for viscous flow at finite Reynolds numbers, only one unstable mode
may be present, and Mack (1969)’s classification of (two different) modes as applied to
the viscous flow may therefore not be appropriate. In viscous LST (hereafter LST) for
the spatial problem (real frequency, complex streamwise wavenumber), the unstable
mode is represented by a pole that moves in the complex plane with variation in
frequency or Reynolds number (Tumin 2007). Depending on these two parameters,
regions exist where the modal disturbance exhibits characteristics of the inviscid
‘first-mode instability’ or ‘second-mode instability’. For flat plates, these regions occur
consecutively for increasing frequency or streamwise Reynolds number: the region of
first-type characteristic is followed by the region of second-type characteristic, which
is followed by the region of third-type characteristic, and so forth.

As the terminology ‘first mode’ and ‘second mode’ is still widely used in the
high-speed transition community, here we will refer to these mode characteristics by
the ‘first-type’ and ‘second-type’ instabilities, respectively. Note also that the driving
physical mechanism behind the instability is different in different frequency and
Reynolds number regimes, while at the same time it is made clear that there are
not two different modes. Unlike in incompressible flow, the largest growth rates
occur for non-zero spanwise wavenumbers if the instability mode possesses ‘first-type’
characteristics. If it exhibits ‘second-type’ characteristics, the most-amplified wave is
two-dimensional. Pagella, Rist & Wagner (2002) showed that the growth of a two-
dimensional unstable mode in the first-type region for a flat plate is underpredicted
by LST due to non-parallel effects.

1.2. The stable discrete modes

Beside the instability mode, other, though stable, discrete modes play a role in the
evolution of perturbations inside the boundary layer. These modes were described
by Mack (1969) and were denoted as ‘multiple viscous solution’ (MVS). Several
of these stable modes exist: for each of the different characteristic regions of the
unstable mode, a stable mode exists (see for instance figure 7 of Ma & Zhong 2003a).
The locations where the respective stable and unstable modes have the same phase



Disturbance evolution in a Mach 4.8 boundary layer with roughness 437

velocities are usually the locations that separate the characteristic regions of the
unstable mode.

Fedorov (2003) discussed that at small Reynolds numbers one discrete mode is
synchronized with the slow acoustic (free-stream) mode (see § 1.3), whereas another
mode is synchronized with the fast acoustic mode. Therefore, he suggested calling
these discrete modes slow and fast discrete modes, respectively. For instance, in an
example by Tumin (2007) at Mach 5.6, the unstable mode is the slow discrete mode
while the fast discrete mode is a stable mode. On the other hand, more than one stable
mode exists, and these may all arise from the fast acoustic mode (again, see figure
7 of Ma & Zhong 2003a), making such a denotation not unique. Moreover, just as
Mack (1969)’s description of the different inviscid instability modes – reminiscent of
an infinitely large Reynolds number, Re – is not necessarily a good choice for finite
Reynolds number as argued by Tumin (2007), a description based on Re approaching
zero might not be helpful either. For boundary layers that are not self-similar, a
straightforward tracking of poles for Re going to zero or to infinity is not possible.

For these reasons, we will later call the discrete mode that can become unstable
‘the instability mode’, with ‘first-type’ or ‘second-type’ characteristics, even though it
is understood that for certain frequencies and Reynolds numbers, this mode may
be stable. The stable modes, on the other hand, will be denoted so as to emphasize
that they separate regions of first-, second- and higher-type instability characteristics:
‘stable mode 1–2’, ‘stable mode 2–3’, and so forth.

In numerical simulations, Eissler & Bestek (1996) observed that blowing and
suction at the wall in the region of first-type instability can excite such a stable mode.
Moreover, they showed that the superposition of the unstable and the stable modes
can lead to a beating in the wall-pressure signal via a constructive and destructive
interference. Such an interference is possible since the stable mode often possesses a
similar amplitude function close to the wall as the unstable mode, in particular in the
region of first-type instability characteristics.

1.3. The continuous spectra

Apart from the discrete modes, there exist several continuous spectra in the solution
of the spatial linear stability problem (Schmid & Henningson 2001). For compressible
flat-plate boundary layers, seven of them can be found (see for instance discussion in
Balakumar & Malik 1992), of which four correspond to the downstream disturbance
evolution. The remaining three possess large decay rates and therefore the upstream
influence from a localized disturbance is small (Balakumar & Malik 1992). The four
branches relevant for downstream disturbance evolution correspond to fast acoustic
modes, slow acoustic modes, vorticity modes and entropy modes.

Tumin (2007) showed that the vorticity and entropy modes do not penetrate the
boundary layer. More precisely, eigenfunctions for the vorticity and the entropy mode
possess oscillations that are wave solutions in the free stream. However, despite the
oscillations, Tumin (2006) pointed out that the sum of these modes can result in
zero perturbations above the Mach wave. For three-dimensional roughness elements,
a superposition of modes from the continuous spectrum can represent streamwise
vortices localized inside the boundary layer behind the roughness (Tumin & Reshotko
2005; Tumin 2006). For two-dimensional roughness elements considered in this paper,
however, we assume that the vorticity and entropy modes are not relevant. The
acoustic modes, which have significantly larger velocity perturbations close to the
wall than outside the boundary layer, may play a role in cases with two-dimensional
roughness.
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1.4. Receptivity, modal interactions and conversion of modes

For a flat plate in supersonic flow, the stage of disturbance generation near the plate’s
leading edge has been studied by Ma & Zhong (2003a) numerically and compared
with theoretical results. In particular, they focused on the origin of instability waves
in the second-type instability region. Ma & Zhong (2003a) argue that ‘. . . resonant
(synchronization) interactions [of stable modes] with both acoustic waves and the
Mack-mode waves’ (p. 31) occur. According to Ma & Zhong (2003a), ‘the stable
wave modes . . . are critical in transferring wave energy between the acoustic waves
and the unstable second mode.’ (p. 31). Similarly, Eissler & Bestek (1996) suggested
that ‘The discrepancies [between LST and numerical simulation as they observed]
for the two-dimensional amplitudes . . . might be the result of an exchange between
the two modes as described recently by Fedorov & Khokhlov (1993).’ Tumin (2007),
following Fedorov & Khokhlov (2001), summarizes this as a route to transition:
‘vorticity/entropy modes → decaying discrete mode → unstable discrete mode →
transition to turbulence’. To provide sufficient evidence for this route, Tumin (2007)
suggested applying a method based on a multi-mode decomposition of DNS data
in order to evaluate the amplitude of the decaying modes (Tumin, Wang & Zhong
2007). However, the existence of this route currently remains an open question.
Moreover, it is not yet clear how differences between LST eigenfunction and amplitude
functions from numerical simulations due to non-parallel effects impact the multi-
mode decomposition. For these reasons, it is desirable to find ways to interpret
simulation results alone in order to supplement these theoretical tools. A viable way,
which will be employed here, is a variation of the dimensions of the disturbance strip,
followed by a comparison of respective results.

Balakumar (2003) investigated the steady flow field induced by two- and three-
dimensional roughness at Mach 3.5. Moreover, he investigated the receptivity process
regarding the interaction of a roughness with an acoustic wave and found that the
roughness plays only a minor role in generating boundary-layer perturbations.

1.5. Disturbance evolution in separated boundary layers

At present, many physics-based transition prediction methods rely on the LST by
applying the eN -method; see for example Malik (1989, 2003). Because of a limited
knowledge of processes involving disturbance generation and nonlinear stages of
disturbance evolution, the prediction is currently not very accurate even for smooth
surfaces. However, the situation is even worse if abrupt geometrical changes caused,
for instance, by steps or ramps occur and result in boundary-layer separation. For
these cases, even the linear amplification may no longer be predicted accurately due
to significant non-parallel effects.

From studies of a weak shock impinging on a boundary layer (Pagella et al. 2002)
or a compression-ramp flow (Pagella, Babucke & Rist 2004), it is known that regions
of boundary-layer separation may considerably increase convective amplification with
second-type characteristics. Both Pagella et al. (2002) and Pagella et al. (2004) argued
that non-parallel effects are responsible for most of the deviations seen between LST
and numerical simulations. A comparison of local LST with results from numerical
simulations in Pagella et al. (2002, 2004) for separating flow was restricted to second-
type waves, and an assessment of the accuracy of LST for first-type (two-dimensional
and oblique) waves in separating flow is still lacking. This article addresses this issue
and includes a more complete comparison.

Even though many practical applications possess three-dimensional rather than
two-dimensional roughness elements, the latter type of element may be seen as
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the limiting case for an increasingly close spacing of three-dimensional roughness
elements. Also, it may be considered representative for flows with boundary-layer
separation due to geometrical changes.

At least three fundamentally different types of physical mechanisms may influence
disturbance evolution. First, the disturbance amplitude may be increased due to
a (convective) amplification boost. Such a boost should be caused by a stronger
instability due to boundary-layer separation. This mechanism can best be investigated
in the region upstream of the roughness, where the local geometry is still that of a
flat plate and the flow is only affected by the roughness-induced pressure gradient. It
is in this region where we will carry out the detailed comparison between LST and
numerical simulation.

Second, the roughness may become a source of additional boundary-layer
perturbations that are absent on smooth surfaces. Even though the roughness is
stationary (unlike the blowing and suction slot of Eissler & Bestek 1996), it may
(indirectly) act as an oscillator. Note that the roughness itself may not necessarily
be the source but might induce flow features absent without the roughness, such
as shocks, responsible for the new disturbance generation. This mechanism will be
studied in the region behind the roughness.

Third, transition to a state of large-amplitude unsteadiness may occur immediately
in front or behind the roughness, due to an absolute instability of the separation zone –
even in the absence of oncoming disturbances. Such a mechanism has been studied
by Robinet (2007) in the case of shock–boundary-layer interaction. Such a study is
beyond the scope of this article. For the cases considered here, we did not observe any
appearance of unforced disturbances that would suggest the presence of an absolute
or global instability.

1.6. Outline

The paper is structured as follows. First, the governing equations for numerical
simulations are given. This section includes a description of the numerical method,
together with the boundary conditions and the roughness geometry (§ 2). Results from
numerical simulation regarding the steady-state base flow (§ 3) and the disturbed flow
(§ 4) are discussed in order to evaluate physical mechanisms leading to disturbance
growth. Findings are summarized in § 5.

2. Governing equations, numerical method and geometry
2.1. Governing equations

The governing equations are the time-dependent three-dimensional Navier–Stokes
equations for a compressible fluid in non-dimensional form. These equations are
formulated for a calorically perfect gases with density ρ, temperature T and pressure p.
Non-dimensionalization is mostly based on the free-stream conditions (marked by ∞):
a reference temperature T̃ref = (γ − 1)T̃∞, density ρ̃∞, specific heat ratio γ=c̃p/c̃v , the

speed of sound c̃∞, thermal conductivity k̃∞, viscosity μ̃∞ and a reference length
L̃ref (all dimensional quantities are marked by )̃. The velocity vector is given by
[ u1 u2 u3 ]T = [ u v w ]T. It is a function of all three spatial dimensions [ x1 x2 x3 ]T =
[ x y z ]T and time t . This results in the following set of equations for mass, momentum
and energy conservation:

∂ρ

∂t
+

∂

∂xj

(ρuj ) = 0, (2.1)
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(Re∞ M∞) Pr∞ M∞ TS x1 x2 y1 y2 NX MY LP sR xc,R γ

105 0.71 4.8 1.993 1.6065 44.4465 see (2.13) 1.575 1200 200 600 20.0 15.0 1.4

Table 1. Simulation parameters for two-dimensional simulations.

∂ρui

∂t
+

∂

∂xj

(ρuiuj + pδij ) =
∂σij

∂xj

, i = 1, 2, 3, (2.2)

∂E

∂t
+

∂

∂xj

[(E + p)uj ] = −∂qj

∂xj

+
∂

∂xk

(ujσjk). (2.3)

The total energy per unit mass E, the viscous stress tensor σij and the heat flux vector

qj are defined as (note that the temperature and velocity scales are (γ − 1)T̃∞ and c̃∞,
respectively):

E = eρ + 1
2
ρuiui, (2.4)

σij =
μ

Re∞

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
, (2.5)

qi =
−1

Re∞Pr∞
ke

∂T

∂xi

. (2.6)

The Reynolds number Re∞ and the Prandtl number Pr∞ are

Re∞ = ρ̃∞c̃∞L̃ref /μ̃∞, (2.7)

Pr∞ = μ̃∞c̃p/k̃∞ . (2.8)

The Mach number M∞ is computed with the streamwise velocity in the free-stream
ũ∞ and the speed of sound c̃∞, i.e. M∞ = ũ∞/c̃∞. The system of equations is closed
by an equation of state:

p = RρT . (2.9)

For a calorically perfect gas, R=R̃/c̃p is the gas constant:

R = (γ − 1) /γ. (2.10)

The free-stream speed of sound is defined as c̃2
∞ = γ R̃T̃∞. Using (2.9) and the

non-dimensionalization for R̃, T̃ and ρ̃ as given above, it can be deduced that the
non-dimensionalization of pressure p̃ is based on a reference pressure p̃ref = ρ̃∞c̃2

∞.
Here, the specific heat cp ≡ 1. The gas properties ke and μ depend on the temperature
and are equal: ke = μ. The latter is computed from Sutherland’s law, with a non-
dimensional Sutherland’s temperature TS = T̃S/T̃∞:

μ = ((γ − 1)T )3/2 1 + TS

(γ − 1)T + TS

. (2.11)

For air (dimensional Sutherland’s temperature T̃S = 110.4 K , see Anderson 2000), the
TS used here (see table 1) corresponds to a free-stream temperature of T̃∞ = 55.4 K .
Finally, the internal enthalpy is proportional to the temperature h = T and the
internal energy e = h−p/ρ is given by (again, note our temperature scale (γ −1)T̃∞):

e = p/ ((γ − 1) ρ) . (2.12)
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To avoid confusion, we will not use indices to denote components in the three
spatial dimensions below, for instance the velocity vector will only be referenced by
[ u v w ]T or by its components. Moreover, in all plots shown below the velocities are
normalized by the free-stream velocity ũ∞ as this is a common practice in the literature.
To represent the streamwise axis, a local Reynolds number Rx=Rex=

√
xRe∞M∞ will

be used.

2.2. Numerical method

The basis for the numerical method we use is an algorithm described by Nagarajan,
Lele & Ferziger (2003), originally developed for transitional flow in subsonic
conditions (Nagarajan, Lele & Ferziger 2007). Time-accurate solutions to the
compressible Navier–Stokes equations, more precisely (2.1)–(2.12), are obtained using
sixth-order compact finite differences in the interior of the domain with explicit
third-order Runge–Kutta time stepping. The numerical discretization is constructed
on a structured, curvilinear grid using staggered variables. The computational code
is parallelized using MPI and has been run on a variety of computer architectures
including shared-memory systems. For two-dimensional calculations, between 16 and
40 CPUs have been used while for three-dimensional simulations 32 CPUs were
employed, resulting in a computational time of ≈0.364 s per time step with 40 CPUs
(NX = 1200) in two-dimensional and ≈2.74 s in three-dimensional with 32 CPUs
(NX = 800).

These simulations aim at capturing all relevant unsteady physical effects without
further modelling and could therefore be denoted as direct numerical simulations.
However, we will refer to them as ‘numerical simulations’ only, since any disturbances
in the laminar flow remain small (linear) and no breakdown to turbulence occurs.

2.3. Discretization, integration domains and boundary conditions

We consider the flow over a flat plate (free-stream u∞ = u(y2) = ũ∞/c̃∞ = M∞)
with a localized two-dimensional roughness. The same set-up has been used in the
numerical investigations of smooth walls (Eissler & Bestek 1996; Pagella et al. 2002).
The origin of the coordinate system is located at the leading edge of the flat plate.
The computational domain is placed downstream of the leading edge. The parameters
for our test case are given in table 1.

At the inflow x1, a self-similar boundary-layer solution is prescribed, while the wall
boundary condition (BC) at y1 is adiabatic for the base flow with a no-slip condition.
Within a certain region close to the outflow x2 and in the free-stream y2, the solution is
damped towards a laminar, self-similar state (sponge region). For three-dimensional
simulations, periodicity in spanwise direction with a domain width λz = 0.60415
is assumed. Only a two-dimensional roughness is considered here. However, the
interaction of such a roughness with a pair of oblique (three-dimensional) waves has
been studied by means of three-dimensional simulations.

For the disturbances, both adiabatic and isothermal wall BCs have been considered
and are compared below. In both these cases, the base flow is the same and has been
computed with an adiabatic wall condition.

2.4. Geometry and grid

The shape of the roughness is defined by the following analytical function:

y1(x) =
hR

2

+1∑
k=−1

k(tanh(sR(x − x0,k))) with x0,k = xc,R − klR/2. (2.13)
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Figure 1. (a) Visualization of the grid in the vicinity of the roughness element. Only every
second grid point in y is shown. (b) Streamwise evolution of maximum disturbance streamwise
velocity for two different resolutions (and x2 = 30.1665), NX = 800,MY = 200 (——), and
NX = 1600,MY = 400 (�) (adiabatic boundary condition for the disturbance, F = 1.0 × 10−4).
The roughness element of height hR = 0.1 and length lR = 0.4 is centred at xc,R = 15
(Rx = 1225) as marked by a vertical line.

The values of sR and xc,R are specified in table 1. The length lR corresponds to the
distance between the two inflection points in the roughness geometry. For the case
depicted in figure 1(a), these inflection points are located at x ≈ 14.8 and x ≈ 15.2. A
number of different roughness heights (hR = [0.01, 0.125]) and lengths (lR = [0.4, 1.6])
have been investigated.

The first (wall-parallel) grid line m = 1 collapses with the wall, i.e. it follows
y1(x). In the streamwise and spanwise directions, it is subdivided with an equidistant
spacing in the x and z directions with NX and KZ points, respectively. For all three-
dimensional calculations we have chosen KZ = 11, otherwise KZ = 0. For these
three-dimensional and a number of two-dimensional simulations, the streamwise
domain length was reduced to x2 = 30.1665 with NX = 800.

In the wall-normal direction, a grid stretching is applied, with the following formula
holding at the inflow n = 1, with κ = 0.25 and m = 1 . . . MY :

y(1, m) = y1

(
(1 − κ)

(
m − 1

MY − 1

)3

+ κ
m − 1

MY − 1

)
. (2.14)

The coefficients appearing in this equation, together with the streamwise and wall-
normal resolutions, are specified in table 1. The grid-stretching has been adjusted
along the roughness; an example of the resulting grid is shown in figure 1(a).

2.5. Disturbance forcing

Disturbances of a fixed frequency are forced via blowing and suction at the wall
upstream of the roughness element. The non-dimensional forcing frequency ω is
defined as (f̃ is the dimensional frequency):

ω = FM2
∞Re∞, with F = 2πf̃

(
μ̃/(ρ̃ũ2)

)
∞. (2.15)

The boundary condition at the wall is

(ρv)wall = Av sin(ωt) sin(16 ξ ) exp
(

−
√

2/2ξ 2
)

,

with ξ = (x − xc,strip)/Lstrip . (2.16)
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xc,strip Lstrip ω F Av Rexc,strip

5.49 8.430 24 0.5 × 10−4 2 × 10−4 741
5.49 4.203 48 1.0 × 10−4 2 × 10−4 741
5.49 2.795 72 1.5 × 10−4 2 × 10−4 741

Table 2. Forcing parameters.

Forcing parameters, including xc,strip and Lstrip , for different frequencies are given in
table 2. The values of xc,strip and Lstrip for the case F = 1.0 × 10−4 were chosen to
match results of Pagella et al. (2002) for a flat plate, and then the strip length was
doubled and halved for a forcing at twice and half this frequency (table 2). For a
visualization of the disturbance in the region of the strip as resulting from (2.16),
see Marxen, Iaccarino & Shaqfeh (2007). For simulations with three-dimensional
disturbance input, the amplitude coefficient Av in (2.16) is replaced by Av cos(2π/λzz).

The time step for the numerical simulation was specified based on the frequency of
the disturbance forcing ω. Here, we have chosen


t =
2π

ω

1

LP
, (2.17)

with LP specified in table 1 for ω = 48. The same 
t was used for the other forcing
frequencies.

2.6. Post-processing: Fourier analysis in time

To analyse the instability of the boundary layer, results are Fourier transformed
in time with a fundamental circular frequency Ω = ω/2. The corresponding discrete
Fourier transform reads (here given only for the two-dimensional case, with i =

√
−1):

ŝhrm =
1

50
×

50∑
l=1

s(x, tl) exp[2 i hrm Ω tl],

with hrm = [0, 1/2, 1], s = u, v, w, ρ, T , p, (2.18)

where 50 samples are taken within two forcing periods, l is the sampling index and
the discrete time is tl = 2/50 LP l
t . The Fourier coefficient ŝhrm(x) is complex, with
an amplitude |ŝhrm |, and the phase is defined as

Φhrm = arctan(Im(ŝhrm)/Re(ŝhrm)). (2.19)

The computations are advanced long enough so that the subharmonic hrm = 1/2 is
at least an order of magnitude smaller than the first harmonic, thus demonstrating
convergence towards a time-periodic state.

Only results for the first harmonic (hrm = 1) will be considered here. The streamwise
disturbance amplification is quantified using wall-normal maxima of the amplitudes
of a disturbance quantity ŝ1, which are computed as

ŝmax
1 (x) = max{|ŝ1(x = const, y)|}. (2.20)

The amplification rate αi is computed from the streamwise velocity component

αi(x) = 1/ûmax
1 ∂ûmax

1 /∂x. (2.21)
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The phase velocity is computed from the pressure (s = p in (2.19), note that cph is
non-dimensionalized by the free-stream velocity, i.e. cph = c̃ph/ũ∞ = c̃ph/(c̃∞M∞)):

cph = Re∞M∞F (∂Φ1/∂x)−1. (2.22)

2.7. Verification

To assess the accuracy of the present code, we compared our computations with
Pagella et al. (2002), who studied the growth of small disturbances in a flat-plate
boundary layer at Mach 4.8 without a roughness element. The comparisons reported
by Marxen et al. (2007) show very good agreement in all quantities of interest.

For the case with roughness, a grid study has been performed, showing the
convergence of the present results for both the mean (not shown here, but see figure 1a

of Marxen & Iaccarino 2008b) and disturbance quantities (figure 1b). Moreover,
Marxen & Iaccarino (2008b) compared results for a body-fitted method using a non-
orthogonal grid – as it is applied here – and an immersed boundary method based on
a Cartesian orthogonal grid. They found good agreement between the two for both
base flow and disturbance quantities.

The pressure rise across the shock, which develops downstream of the roughness,
is not severe and, therefore, no shock-capturing scheme was required in the
computations. Instead, the application of a high-order compact filter in streamwise
and wall-normal directions is sufficient to stabilize the simulation without
compromising the accuracy, as demonstrated by the grid study and also by a
comparison of the steady-state base flow with a computation applying a Roe Riemann
solver and a second order TVD scheme (Marxen & Iaccarino 2008a).

3. Base flow
To highlight the change in the steady-state laminar flow caused by a two-

dimensional roughness element, a comparison between the flat-plate boundary layer
with and without roughness is given. In particular, features that are absent for the
smooth plate are pointed out in § 3.1. The influence of parameters such as the height
and length of the roughness are briefly discussed in § 3.2.

3.1. General features

The case with a roughness having the height hR = 0.1 and the (shortest) length
lR = 0.4 is regarded as the reference case and will be discussed in some detail. For
this case, the ratio between the boundary-layer thickness δ99, based on ũ/ũ∞=0.99
for the smooth flat plate at the centre location of the roughness (x = 15), and the
height of the roughness is hR/δ99 ≈ 0.55. Analogous relations for the boundary-layer
displacement thickness δ∗ and the momentum thickness θ are hR/δ∗ ≈ 0.71 and
hR/θ∗ ≈ 12.24. A representation of the base flow field is given in figure 2 by means
of numerical Schlieren images.

The roughness element causes a compression followed by an expansion, which again
is followed by a compression. The latter causes a weak oblique shock downstream of
the roughness element, well visible in figure 2(a). The expansion downstream of the
roughness leads to an acceleration of the flow in the free stream (compare locations
x = 15 and x = 15.625 for y ∈ [0.22, 0.35] in figure 3). This acceleration causes
the streamlines to turn towards the wall (figure 2b) after they have been deflected
away from the wall by the roughness. Finally, downstream of the roughness the shock
causes the streamlines to become roughly wall parallel again.
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From figures 2(a) and 2(b) we can get a rough estimation of the shock angle σ . We
will measure it with respect to a local streamline, noting that the streamlines are not
exactly parallel to the wall. Based on the region between x = 16.5 and x = 18, the
shock angle for our case is σ ≈ 12.3◦. In order to compare this value with the Mach
angle, we have to take into account that the Mach number before the shock is slightly
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Figure 4. Contours of u = 0 for different roughness length with matching front (hR = 0.1,
figures 4a and 4b) as well as variation in the height of the roughness (lR = 0.4, figure 4c). The
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with the streamwise axis adjusted to a matching back, respectively. (c) hR = 0.1 (——) and
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higher than the free-stream Mach number due to the expansion. Here, its value is 5.3
(figure 2b), resulting in a Mach angle of arctan(5.3−1) ≈ 10.7◦. This number deviates
by only 10 % from the shock angle σ and hence suggests that we have a weak shock
only.

The localized roughness element leads to boundary-layer separation in both the
upstream and downstream regions. A small amount of reverse flow is visible in wall-
normal profiles of the streamwise velocity (figure 3, inset). On top of the roughness,
a thin attached boundary layer forms.

For hR = 0.1, the length of the separation bubbles upstream and downstream
differs roughly by a factor of two: its length is approximately 13hR upstream of the
roughness and 6hR downstream of it (figure 4c). This observation is consistent with
reports of Balakumar (2003) for a boundary layer at Mach 3.5.

3.2. Variations of the roughness geometry

To evaluate the sensitivity of the flow with respect to the geometry of the roughness,
the effect of slight geometrical variations has been studied. In addition, this variation
will be useful later to extract physical insights regarding disturbance evolution. More
precisely, roughness length and position as well as height have been varied.
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Results have been found to be relatively insensitive to the exact shape of the
roughness (Marxen & Iaccarino 2008b). For instance, the length of the separation
region in front of the roughness is only approximately 8 % longer for a sharp,
rectangular-shaped roughness of the same height and volume as the present rounded
roughness. Differences in amplification in front of the roughness are even less strong
(see figure 14b of Marxen & Iaccarino 2008b).

3.2.1. Length of the roughness

Three different lengths, all with a height hR = 0.1, have been simulated (lR =
0.4, 0.8, 1.6). The centre location of the roughness has been varied in two ways for all
these lengths. In the first way, the forward facing side is identical for all lengths, while
in the second the backward facing side collapses. In the case of a matching front, the
separation regions in front of the roughness are almost identical (figure 4a), while in
the rear some small differences are visible (figure 4b). Calculations with a matching
back revealed that the differences behind the roughness visible in figure 4(b) are due
to the obstacle length and not its position with respect to the plate’s leading edge.
The independence of base-flow results with respect to slight variations in the position
of the roughness is not surprising, since the growth of the boundary layer without
roughness occurs on a much longer length scale compared with the length of the
roughness, i.e. Rx(xc,R) � (Rx(xc,R − lR/2) − Rx(xc,R + lR/2)).

3.2.2. Height of the roughness

Six different heights of the roughness with length lR = 0.4 have been investigated
(hR = 0.125, 0.1, 0.075, 0.05, 0.025, 0.0125). In the case hR = 0.05, we observe that
both the separation regions in the front and the back have been reduced considerably
relative to the hR = 0.1 case (figure 4c). It is consistent with Balakumar (2003) that
for hR = 0.05 the separation region behind the roughness is larger than the one in
front (the latter is so small that it is not even visible in figure 4c) – while for the
higher roughness hR = 0.1 the opposite was true. The length of the separation zone
in the back for hR = 0.05 is smaller than the one for hR = 0.1 by a factor of ∼ 3.3,
again similar to the value ∼ 3.4 reported by Balakumar (2003).

4. Boundary-layer instability and disturbance evolution
In the last section, we have seen that the roughness modifies the base flow through

non-local (pressure) effects, causing recirculation upstream and downstream. In light
of results from Pagella et al. (2002, 2004) the instability of the boundary layer (when
compared with the smooth plate) is expected to be profoundly changed as well.
We note that we did not observe an absolute or global instability as in Robinet
(2007). Such an occurrence would have prevented the undisturbed laminar flow from
attaining a converged steady state.

The steady-state laminar flow fields for different roughness heights will be used as a
base flow for subsequent investigations of convective instability of a small-amplitude
perturbation. We apply two different methods. First, a local linear stability analysis
shall help us to get an overall impression on how a two-dimensional roughness alters
the instability of the boundary layer. Second, results from numerical simulations are
presented, in which a small-amplitude perturbation is forced by means of blowing
and suction at the wall.

Main emphasis is put on results from numerical simulations, while the downstream
evolution of the resulting boundary-layer disturbance will also be compared between
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the two approaches. This comparison can aid in the interpretation of the flow
dynamics. While it is understood that a theoretical approach based on the parabolized
stability equations (Herbert 1997) may result in a closer matching of numerical and
theoretical results, we regard the theoretical approach employed here as sufficient to
gain a better understanding of the flow dynamics.

A linear stability analysis is presented first (§ 4.1), followed by a discussion of results
from a variety of numerical simulations with disturbance forcing. The discussion is
grouped according to three different regions with respect to the roughness. First,
the disturbance evolution in front of the roughness is discussed (§ 4.2) in order
to investigate the effect of flow separation on the amplification and to assess the
accuracy of LST for describing disturbance evolution in separating boundary layers.
Next, the flow field downstream of the roughness is considered (§ 4.3). A comparison
of numerical results and LST can help to identify mechanisms of disturbance growth
in the downstream region. Finally, the evolution in the vicinity of the roughness is
inspected (§ 4.4). In this region, LST is not applicable due to rapid changes in both
base flow and disturbance, and therefore our investigation relies entirely on the full
Navier–Stokes equations.

The disturbance amplitude in all cases considered here is sufficiently small as to not
cause a significant mean flow deformation. This deformation was checked to be of
the order of 10−6 for a perturbation amplitude of the order of 10−3. A differentiation
between the stability of the base flow and that of the mean flow, that is, the time
average of the disturbed flow, as done for example by Sipp & Lebedev (2007), is
therefore not necessary.

Finally, we have to point out that only one specific set of parameters has been
considered here, in particular regarding the choice of Mach number and the location
of roughness (i.e. Rexc,R

).

4.1. Linear stability analysis

LST analyses are carried out using a shooting method developed and implemented by
Mack (1969). This method solves the spatial linear stability problem: for a fixed (real)
frequency, it computes a single complex eigenvalue. This eigenvalue is composed of
a streamwise wavenumber (real part) αr = ω/(cphM∞) (note that cph has been non-
dimensionalized by the free-stream velocity, i.e. cph = c̃ph/ũ∞ = c̃ph/(c̃∞M∞), see (2.22),
while ω has been normalized using the free-stream speed of sound; see (2.15)) and
streamwise amplification rate (imaginary part) αi . Emphasis is placed on examining
two-dimensional disturbances, as these are the most amplified ones for the present
set-up. A brief discussion of oblique (three-dimensional) waves is also given. In the
stability calculations, an isothermal boundary condition has been used. They are
based on the steady-state flow fields as discussed in § 3.

4.1.1. Stability diagrams for a two-dimensional disturbance

Amplification rates αi for selected roughnesses are given in figure 5. For reference,
the stability of the flat plate without roughness is also depicted (figure 5a). The
roughness causes the region of second-type instability (the upper dark region in
the stability diagrams) to shift towards lower frequencies. The overall maximum
amplification rate is larger with roughness as compared with the flat-plate case, and
this maximum is located within the separation region upstream of the roughness.

The roughness with a lower height has a weaker effect on the instability, not
only in terms of the affected Rx range but also with regard to the maximum
amplification rate (compare figures 5b and 5c). As expected from the base flow
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Figure 5. Stability diagrams for two-dimensional perturbations (amplification rate
αi × Rx/Re∞ from LST). Line contours range from 0 to 0.0005 with 
 = 0.000125. The
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be invalid. (a) Flat plate. (b) Roughness with hR = 0.1 and lR = 0.4. (c) Roughness with
hR = 0.05 and lR = 0.4 and (d) roughness with hR = 0.1 and lR = 0.6.

(§ 3.2), the instability in front of the roughness is independent of the (downstream)
length of the roughness (compare figures 5b and 5d), while some differences are visible
in the region downstream of the roughness.

4.1.2. Oblique (three-dimensional) waves

Stability diagrams for oblique (three-dimensional) spanwise waves are depicted in
figure 6. The most amplified first-type instability wave possesses a non-zero spanwise
wavenumber (figure 6a). Nevertheless, inside the separation bubble in front of the
roughness, the second-type instability is still stronger than the first-type instability.
This is true even at the spanwise wavenumber where the first-type instability exhibits
maximum amplification (β ≈ 0.08 in figure 6b).

In contrast to the frequency range, the range of amplified spanwise wavenumbers
increases due to the roughness (compare figures 6b and 6c). The overall maximum
amplification for first-type instability modes is shifted towards larger spanwise
wavenumbers (figure 6a). It was also found that the streamwise wavenumber increases,
so that the (shifting) effect on the obliqueness angle is less pronounced.
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LST results suggest that, with roughness, the first-type instability is reduced for
two-dimensional waves when compared with the flat plate. For instance, at Rx = 1200,

these waves are even predicted to be damped (see the white region in the lower part
of figure 6a). Pagella et al. (2002) made a similar observation for their case of shock–
boundary-layer interaction, but also acknowledged that a first-mode instability should
be present since a generalized inflection point exists. Despite this observation of an
inflection point, in a follow-up paper, Pagella et al. (2004) argued that the first-type
instability mode is stabilized. However, if we include oblique (three-dimensional) waves
in the analysis, we see that LST predicts an increase in the first-type amplification for
non-zero spanwise wavenumbers, i.e. a destabilization of the most important oblique
first-type instability waves by the two-dimensional roughness.

4.2. Disturbance evolution in the separating boundary layer in front of the roughness

The evolution of disturbances shall now be analysed by means of integrating the
Navier–Stokes equations in time. Disturbances have been forced via blowing and
suction upstream of the roughness as described in § 2.5, and their evolution is studied
using a Fourier analysis (see § 2.6).
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4.2.1. Simulation results and comparison with LST

The amplification for F = 1.0 × 10−4 increases strongly upstream of the roughness
element as compared with the case without roughness (figure 7a). Differences between
an adiabatic and an isothermal condition for the disturbance are small (figure 7b).
Regarding amplification rates (figure 8) in the zone where we see a difference between
the flat plate and the roughness case (Rx > 1050), quantitative agreement between
LST and Navier–Stokes simulation results derived from ûmax

1 is good whenever
the disturbance possesses second-type instability characteristics. This is the case for
F = 1.0 × 10−4 closer to the roughness (Rx � 1160), while for F = 1.5 × 10−4 this is
true farther upstream of the roughness (Rx � 1160).

Upstream of Rx � 1160, the disturbance at F = 1.0 × 10−4 exhibits first-type
instability characteristics, which was inferred from the fact that no change in phase
for the pressure amplitude function occurs along y. In this region of first-type
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Figure 9. Comparison of phase velocities cph, based on the pressure, between Navier–Stokes
simulation with isothermal BC (– –y = 0, ——y = 0.13) and LST amplified mode (�)
and LST stable mode 1–2 (· · · · · · ·� · · · · · · ·), roughness with hR = 0.1 and lR = 0.4.
F = 1.0 × 10−4 (a) and 1.5 × 10−4 (b).

characteristics, the amplification of the two-dimensional wave is considerably under
predicted by LST (figure 8a).

Regarding the two-dimensional first-type instability, the underprediction of
amplification can likely be explained by non-parallel effects. Pagella et al. (2002)
provided evidence that this is true for a flat-plate boundary layer, and we believe that
it is even more pronounced here as a result of separation.

Phase velocities in the region of first-type characteristics obtained away from the
wall compare well with LST upstream of the roughness (solid lines in figure 9a
for Rx � 1160 at F = 1.0 × 10−4). However, phase velocities for F = 1.0 × 10−4 in
the region of second-type characteristics in front of, but close to, the roughness for
Rx � 1160 are underpredicted by LST (figure 9a). Additional evidence for the latter
conjecture can be found in figure 9(b), if we keep in mind that the disturbance at the
higher frequency F = 1.5 × 10−4 is located in the region of the second-type instability
for all Rx (again, solid lines). A systematic deviation of phase velocities between the
Navier–Stokes simulation and LST occurs near the wall in the second-type regions
(see dashed lines in figure 9).

Similar to the phase velocities, the agreement of amplitude functions for the first-
type instability is very good upstream of the roughness (figures 10a and 10b). It
is slightly better than for a perturbation with second-type characteristics at the
same streamwise location (figures 10c and 10d). The differences for the mode with
second-type characteristics visible in figure 10(c) for û1 and in figure 10(d) for T̂1

are consistent with those of Pagella et al. (2002). In particular, LST overpredicts the
T̂1-maximum (figure 10d) and the level of û1 in the free stream (figure 10c). Note that
in figure 10 (and again in figure 16), all amplitude functions have been normalized by
a constant factor. Such a procedure is allowed and reasonable due to the linearity of
the disturbance. The factor has been chosen to be the maximum (non-dimensional)
streamwise velocity disturbance max|û1| at the respective x-location (denoted by umax

in the axis title).
Qualitatively, the same differences can be observed for F = 1.0 × 10−4 once

the corresponding disturbance lies in the region of second-type instability farther
downstream (figures 10e and 10f), albeit these differences are much more pronounced.
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Figure 10. Wall-normal functions, roughness with hR = 0.1 and lR = 0.4. LST (�) and
Navier–Stokes simulation with isothermal BC (——). (a) |û1| at Rx = 1100, F = 1.0 × 10−4.

(b) |T̂1| at Rx = 1100, F = 1.0 × 10−4. (c) |û1| at Rx = 1100, F = 1.5 × 10−4. (d) |T̂1| at

Rx = 1100, F = 1.5 × 10−4. (e) |û1| at Rx = 1180, F = 1.0 × 10−4. (f ) |T̂1| at Rx = 1180,
F = 1.0 × 10−4.

Hence, these differences in amplitude functions are reasonably explained as a
result of non-parallel effects and are more pronounced for modes with second-type
characteristics.

Further confirmation for LST’s underprediction of amplification rates in the first-
type region comes from a simulation with F = 0.5 × 10−4, for which the disturbance
lies in the first-type region within the entire domain in front of the roughness
(figure 11a). For this frequency, LST predicts even qualitatively wrong trends
regarding amplification rates: while the disturbance is more strongly amplified due
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Figure 11. Streamwise evolution of ûmax
1 with forcing at F = 0.5 × 10−4. Roughness with
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base flow with roughness hR = 0.1, lR = 0.4 (�). (a) Two-dimensional wave, isothermal BC
for the disturbance. (b) Oblique (three-dimensional) wave, adiabatic BC, with 2π/λz = 10.4 (at
Rx = 1180, this corresponds to βr = 0.1227).

to the separation, LST predicts less amplification than that for the flat plate as
highlighted in § 4.1.2. A possible reason for this deficiency of LST is associated
with the streamwise wavelength of the disturbance, which increases with decreasing
frequency and, therefore, the parallel-flow assumption in the theory becomes more
strongly violated, especially in the vicinity of the roughness. Interestingly, while
the increase in amplification is qualitatively the same for two-dimensional and
oblique (three-dimensional) waves (compare figures 11a and 11b), this increase is
quantitatively more pronounced for the two-dimensional wave. For that reason, we
will not further consider oblique (three-dimensional) waves. In the oblique-wave case
also LST predicts a destabilization (compare figures 6b and 6c).

To understand the LST results regarding the different qualitative predictions for
two-dimensional and three-dimensional waves, the alteration of the amplification rate
may be regarded as caused by the sum of (separate) contributions from opposite effects
induced by the separating boundary layer. A stronger inflectional instability may be
overcompensated in the LST by a reduction in the amplification rate associated with
a stronger non-parallel effect. This effect is more pronounced for two-dimensional
waves and causes the resulting amplification rate to lie below the flat-plate value.

In summary, the overall good agreement of phase velocities and amplitude functions
between LST and numerical simulation even in the separation region in front of the
roughness suggests that LST is a useful tool for the interpretation of numerical
results. However, a less good agreement is seen with respect to amplification rates, in
particular LST fails to fully capture the destabilization of a first-type instability in
the separation region.

Lastly, based on the evidence presented here, we cannot exclude that the increased
amplification as seen in the numerical results is associated with the non-normality of
the modes, i.e. transient growth. Such an effect will be discussed for the region behind
the roughness in § 4.3.2. One way to clarify this issue may be to apply a multi-mode
decomposition (Tumin et al. 2007), together with a theoretical approach capable of
handling non-parallel base flows.
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4.2.2. Physical mechanisms of disturbance growth

The alteration of instability caused by the separation region in front of the roughness
can be explained by the changed base-flow profiles. The effect of changes in the base
flow has been studied before, and we will apply the respective findings to our case in
order to explain the observed alteration.

Referring to a second-type instability, Malik & Anderson (1991) describe that:
‘Anything that thins the boundary layer decreases the wavelength and thus increases
the frequency and the converse is also true’. Indeed, we observed that the region
of second-type instability moves to lower frequencies, which is therefore due to the
boundary-layer thickening caused by separation.

According to Pagella et al. (2002), an increased disturbance amplification is caused
by the displacement of the shear layer away from the wall, diminishing the stabilizing
influence of viscosity. This conjecture is in agreement with an earlier analysis by
Mack (1975) regarding the influence of alterations in boundary-layer thickness by, for
example, constant suction at the wall or pressure gradients. This argument applies to
both first- and second-type instabilities, as the instability mechanism in both cases is
essentially of an inviscid nature for the present Mach number.

Referring specifically to the region of second-type instability characteristics, Pagella
et al. (2002) pointed out that ‘. . . another portion of the total rise of . . . instability
can be assumed to be caused by the increase of thickness in this local supersonic
regions.’ (p. 2093) This latter effect is absent for a first-type instability mechanism.
This absence therefore offers an explanation as to why we see a stronger increase
(when compared with the flat plate, respectively) in amplification for the second-type
instability (figure 7) than that for the first-type instability (figure 11). In summary, we
believe that two main mechanisms are at work altering the instability: a diminishing
influence of viscosity (first and second type) and the increase in thickness of the local
supersonic regions (affecting only the second type).

4.2.3. Influence of the roughness height

The effect of the height hR on the disturbance evolution in front of the roughness
has been studied only for adiabatic wall boundary conditions for the disturbance.
This effect turns out to be as expected in light of the explanations in the previous
section: A higher roughness translates to stronger separation accompanied by stronger
amplification in front of the roughness (figure 12). For a fixed frequency, there exists
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a height of the roughness leading to the largest amplitude just upstream of the
roughness. Further increasing the roughness height does not further increase the gain
in amplitude as the (second-type) instability region is pushed towards lower frequencies
and the amplification rate is reduced or even becomes negative (indicating damping)
in front of the roughness.

These results suggest that for a fixed frequency, a most dangerous height exists if
we consider streamwise integrated amplification. However, this statement may only
be valid as long as the roughness is not too high, and no attempts were made here to
increase the height beyond the boundary-layer edge.

4.3. Disturbance evolution downstream of the roughness

In the introduction (§ 1) it was pointed out that the roughness may indirectly act
as an oscillator becoming a source of boundary-layer perturbations that are absent
otherwise. If they exist, these perturbations may be observable downstream of the
roughness. This section demonstrates that additional perturbations can be generated
even in the absence of a global instability of the type considered by Robinet (2007).
These additional perturbations may be important even if they are stable due to
transient-growth effects. Upon interaction with those coming from upstream, they can
cause the total disturbance amplitude behind the roughness to increase significantly.
This could induce early onset of nonlinear effects.

One possible interaction is a constructive interference of normal modes similar
to the beat discussed in the introduction, an effect that will be temporary and may
therefore indeed be classified as transient growth (see § 4.3.2). The second possible, but
entirely different, interaction is a conversion of an additional stable disturbance into
the (original) amplified disturbance. In this situation, the amplitude of the original
wave will increase permanently so that this effect is important even far downstream
(see § 4.3.5). Both mechanisms can occur simultaneously and are explored in the
following. Third, a complex interaction of the disturbance with a rapidly changing
boundary layer in the vicinity of the roughness may occur and cause a sudden
amplification boost (see § 4.4.3).

4.3.1. Numerical results and comparison with LST

The linear stability results of § 4.1.1 showed that stability properties upstream
and downstream of the roughness are similar. The most important observation was
an increased amplification for the second-type instability mechanism, which is also
shifted to lower frequencies (see e.g. figure 5b). Therefore, we might expect that the
region of displaced boundary layer downstream of the roughness causes a similar
disturbance evolution as the zone upstream of it (see § 4.2.1) – where overall good
agreement between the Navier–Stokes simulation and LST was found for the second-
type instability. Yet, downstream of the roughness, we see an alternating strong
increase and decrease in disturbance amplitudes instead (figure 13). It does not at all
resemble the behaviour of the most amplified mode from LST – even if we account for
the systematic differences between LST and Navier–Stokes simulation to be expected
in light of § 4.2.1. The oscillating pattern is particularly visible for near-wall maxima
as they occur for û1 or v̂1 but not for ρ̂1 or T̂1 (figure 13a). It is more pronounced for
the adiabatic BC as compared with the isothermal BC (figure 13b).

Pagella et al. (2002) made a similar observation downstream of the separation
zone caused by shock–boundary-layer interaction. They also noted a change in the
speed of wave propagation. The evolution of wall-pressure perturbations in our
case (dashed lines in figure 14) is in complete qualitative agreement with their
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1 for a flat
plate, but are shifted by a factor of 3.06.

c p
h

0.85

0.90

0.95

1.00

1.05

A
m

p
li

tu
d
e

10–2

10–3

10–4

(a) (b)

Rx

1300 1400 1500

Rx

1300 1400 1500

Figure 14. Comparison between Navier–Stokes simulation with different wall boundary
conditions for F = 1.0 × 10−4, roughness with hR = 0.1 and lR = 0.4. Navier–Stokes solution
at y = 0.0 (– –) and y = 0.2 (——). Thick lines denote isothermal boundary condition for
the disturbance, and thin lines denote adiabatic boundary condition for the disturbance.
(a) Streamwise evolution of |p̂|. (b) Phase velocities cph.

observations. In the region away from the wall (solid lines in figures 14 and 15)
however, favourable agreement of the pressure perturbation with the amplified mode
from LST (open symbols) is found for both streamwise-integrated amplification rate
and phase velocities—already shortly downstream of the roughness for Rx > 1300
with a slight underprediction of cph from LST in the interval Rx ∈ [1310, 1360]
(figure 15).

Results for an isothermal boundary condition for the disturbance exhibit a larger
amplification for both flat plate and with a roughness. The larger amplitude observed
far downstream in the case of an isothermal BC as compared with the adiabatic BC
can be explained by this difference in amplification (see the dotted lines in figure 13b).
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(a) Streamwise evolution of |p̂|. (b) Phase velocities cph.

4.3.2. Physical mechanisms of disturbance growth

The good agreement between the Navier–Stokes simulation and LST away from
the wall (figure 15) indicates that the total perturbation signal indeed contains the
amplified mode. However, disagreement at the wall suggests that this mode cannot be
the only contribution. Instead, the signal may be composed of (an) additional mode(s)
of the same frequency resulting in a beat. Eissler & Bestek (1996) demonstrated that
blowing and suction at the wall can excite what we call the stable mode 1–2, and
the interaction of the stable and the unstable modes was, as they could show,
responsible for a beat they observed. Since the wall signature that they observed
resembles that witnessed in our calculations for flow behind the roughness element,
we were motivated to check whether the same physical mechanism is at work in our
application.

In order to render such an explanation plausible, the stable mode 1–2 has to meet
certain requirements. First, it has to have a similar amplitude function close to the
wall as the amplified mode, but decay to zero much more quickly away from the wall.
Figure 16 demonstrates that this is true for the present case indeed (see for instance
also figure 7 of Fezer & Kloker 2002). A superposition could explain why at one
location the amplitude function near the wall from numerical simulation is larger
than the instability mode from LST (figure 16a). Slightly downstream at Rx = 1500,
LST and numerical results for the isothermal BC match, while numerical pressure
amplitude functions for the adiabatic BC are even significantly smaller (figure 16b).
This latter observation can explain why a more pronounced beat is observable in the
adiabatic case.

Second, the amplification rates of both the unstable and the stable modes should
be sufficiently small for a significantly long distance so that both waves keep a
comparable amplitude for a non-negligible downstream distance. Even though the
stable mode 1–2 is predicted by LST to be damped at a non-negligible rate (figure 15a,
filled symbols), results in Ma & Zhong (2003a) for a mode 2–3, which is similar in
character to mode 1–2, suggest that a numerical simulation may exhibit a much
weaker decay rate than the one predicted by LST (as much as 50 %; see figure 26 of
Ma & Zhong 2003a). For that reason, the actual disturbance may not be as strongly
damped as suggested by LST and may persist much farther downstream. Results of
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Eissler & Bestek (1996) independently support Ma & Zhong (2003a)’s findings and
our hypothesis. In their numerical simulation the beating, caused by a mode 1–2,
remains visible longer than one would have expected from LST (see their figure 8).
A longer lasting beat can be expected if the damping is weaker than predicted by
LST. Our approach of comparing numerical amplitude functions with eigenfunctions
from two different modes may be regarded as a simple qualitative analogue to the
multi-mode decomposition of Tumin et al. (2007). It is understood that with such a
decomposition, a more quantitative result will be achievable. However, we believe that
our simple approach provides sufficient evidence to understand the flow dynamics,
especially since we have used growth rates and phase velocities in addition to the
pressure-amplitude functions.

In summary, the roughness is the source of an additional but stable disturbance,
and the interaction of this disturbance with the unstable one causes a beat due to
interference. The beating is more pronounced for an adiabatic boundary condition
due to a smaller amplification and hence smaller absolute amplitude of the unstable
mode (figure 13b). The role of the stable mode is further discussed in § 4.3.5.

4.3.3. Disturbance evolution far behind the roughness

Far downstream, the base flow and disturbance evolution return to a flat-plate
behaviour again (figure 17). For F = 1.0 × 10−4 with a roughness element, the
amplitude levels far downstream are considerably higher than in the flat-plate case
(figure 17a). However, the calculation with a higher frequency, F = 1.5 × 10−4, shows
that the far-downstream amplitude can be reduced significantly by the roughness
(figure 17b). This effect is due to the region of the second-type instability being
shifted to lower frequencies so that the amplification rate, for instance, in the range
1150 < Rx < 1200, remains below the value for the flat plate. The shift shortens the
streamwise region in which the second-type instability is active. Along the roughness,
the disturbance is even further damped. In the case of the lower frequency, F =
0.5 × 10−4, the additional amplification and damping caused by the roughness are
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Figure 17. Streamwise evolution of maximum disturbance density ρ̂max
1 with (——) and

without (——) roughness element, isothermal BC. The roughness element is centred at x=15
(Rx=1225) and has hR = 0.1 and lR = 0.4. Flat-plate results multiplied by a constant factor
are also given (– –). (a) F = 1.0 × 10−4. (b) F = 1.5 × 10−4. (c) F = 0.5 × 10−4.

balanced (figure 17c) so that the obstacle does not introduce any significant (far-
downstream) modification with respect to the smooth plate behaviour.

Overall, these results support the hypothesis that the roughness elements behave
as disturbance amplifiers with a limited bandwidth, capable of filtering a range
of frequencies and strongly amplify only a selected range. This range of unstable
frequencies is narrower than that for the flat plate.

The high-frequency result (F = 1.5 × 10−4) does not exhibit a notable beat
downstream of the roughness (figure 17b). This observation is in agreement
with Eissler & Bestek (1996), who did not observe the excitation of a beat by
blowing/suction in the region of the second-type instability.

4.3.4. Influence of the roughness height

An increase of disturbance amplitude can be seen not only in front of the roughness
as discussed in § 4.2.3, but also far downstream (figure 18). However, for small
roughness heights h � 0.05 the increase in amplitude is more pronounced in front of
the roughness than far downstream. This effect is stronger for a near-wall maximum
(as it occurs for the streamwise velocity, figure 18b) than for a wall-distant maximum
(as it occurs for the density, figure 18a). It is consistent with the observation that
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1 .

A
m

p
li

tu
d
e 

ra
ti

o

0.02 0.04 0.06 0.08 0.10 0.12 0.02 0.04 0.06 0.08 0.10 0.120

1

2

0

1

2

3

4

hR hR

(a) (b)

Figure 19. Ratio ŝmax
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near-wall quantities are more strongly affected upstream of the roughness (see
figure 7), i.e. it is regarded as a non-parallel effect.

The ratio of disturbance amplitude far downstream and immediately in front of the
roughness, i.e. the quantity ŝmax

1 (Rx = 1680)/ŝmax
1 (Rx = 1200), decreases slightly with

increasing roughness height for h � 0.05 (figure 19). To understand this observation,
we recall that along the roughness a region of damping occurs (see § 4.4.1) and this
may explain why the relative amplitude gain (as compared with the flat plate hR ≡ 0)
far behind the roughness is smaller than in front of it.

For larger roughness heights (hR > 0.05), however, the influence of the damping
region is much less pronounced. For the density, the ratio of disturbance amplitudes
far downstream and immediately in front of the roughness even becomes significantly
larger than that for the flat plate (figure 19a). Hence, for a larger roughness an
additional boost in amplitude occurs. For the streamwise velocity, the ratio still
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(– –). Flat-plate results are given for reference (thin solid line).

remains smaller (figure 19b) due to the strong non-parallel effect in front of the
roughness, but the ratio is at least seen to increase with roughness height for hR > 0.05.

4.3.5. Role of the stable mode

A closer inspection is warranted to clarify whether the boost effect observed in
the last section originates in the vicinity of the roughness or farther behind it.
We concentrate on the region farther behind the roughness, while the next section
(§ 4.4) is devoted to the vicinity of the roughness. Roughly, at Rx ≈ 1550–1600 (for
F = 1.0 × 10−4), the instability mechanism changes from the first to the second type.
In the absence of the stable mode, the unstable mode (as identified in § 4.3.1) could
be amplified due to both instability types, consecutively in x, as it happens in the
case of the flat plate without roughness. Therefore, the only mechanism to explain an
amplitude boost (beyond what happens for the flat plate) originating farther behind
the roughness would be that the conversion-type mechanism of Fedorov & Khokhlov
(2001) may be active. In this case, the stable mode 1–2 also contained in the signal
should trigger the unstable mode and could be responsible for the amplitude boost.

To check if this conversion mechanism occurs here, a simulation with a shortened
disturbance strip was carried out. As a result of the alteration, a beat is visible already
upstream of the roughness (figure 20). The shortened disturbance strip possesses a
different receptivity, so that the instability mode contained in the signal has a lower
amplitude. To account for this change in amplitude and allow for a meaningful
comparison with the results for the original disturbance strip, the scaling of the
ordinate was adjusted (note the two different ordinates in figure 20). This was done in
the following way: the scaling factor for the adjustment was selected such that both
the dashed and the solid thick lines in figure 20 cross the flat-plate (thin solid) line at
approximately the same streamwise locations in the interval Rx ∈ [1200, 1500] behind
the roughness, namely at Rex = 1232, 1306, 1393 and 1485. Note that this interval
lies before the expected conversion location. The same relative scaling between the
simulations with the different disturbance strips has also been used in figure 23.
The beat observed downstream of the roughness with the shorter strip is more
pronounced as compared with the case with the original disturbance strip. However,
far downstream (i.e. for Rx > 1650) no difference in the evolution of the unstable
mode is visible when we compare the results from the two different forcing strips.
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Figure 21. Streamwise evolution of the maximum amplitude in the Navier–Stokes simulation

for F = 1.0 × 10−4: temperature 0.1 × T̂ max
1 (–·–·–), streamwise velocity ûmax
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the figure (wall-normal extent not to scale). (a) Roughness (thick lines) vs. flat plate (thin line)
for an isothermal BC. (b) Isothermal (thick lines) vs. adiabatic (thin lines) BC.

This suggests that a conversion did not take place, and the stable mode causes only
transient growth. The additional boost in amplitude therefore originates most likely
in the vicinity of the roughness, and this possibility shall be explored in §§ 4.4.2 and
4.4.3.

4.4. Disturbance evolution in the vicinity of and along the roughness

4.4.1. Forward facing side and top of the roughness

In the immediate vicinity upstream of and along the forward facing side of the
roughness, the disturbance evolution is governed by rapid changes in both base flow
and disturbance amplitude functions. In particular, the strong decrease in maximum
amplitude in the range Rx = [1200, 1220] visible for û1 or v̂1 (figure 21a) but not
for T̂1 (again, figure 21a) is due to a strong change in amplitude functions. The
amplification is quite similar for both temperature boundary conditions used here
(figure 21b).

While the maximum for û1 is located close to the wall at Rx = 1200 (figure 22a),
this near-wall maximum shrinks considerably so that the overall maximum is located
away from the wall at Rx = 1220 (figure 22b). In contrast, for T̂1 it remains away
from the wall the entire way (not shown). While amplitude functions for isothermal
and adiabatic wall are almost identical at Rx = 1200, significant differences are visible
near the wall at Rx = 1220.

Such a rapid change suggests that it may not be meaningful to analyse the flow
in this region by considering only local profiles at a fixed location x. Therefore, no
attempt is made to compare numerical results with local LST.

For all investigated frequencies (F = 0.5, 1, 1.5 × 10−4), the disturbance amplitudes
are seen to decrease along the roughness (figure 17), although not simultaneously
for all components (figure 21). The increased amplification observed upstream of the
roughness is, hence, indeed counteracted by the damping along the roughness (as
discussed in § 4.3.4).
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Figure 22. Wall-normal amplitude functions |û1| for the forcing frequency F = 1.0 × 10−4 for
an isothermal (——) and adiabatic (– –) boundary condition for the disturbance, roughness
with hR = 0.1 and lR = 0.4. The base-flow profile (streamwise velocity) is given for reference.
(a) Rx = 1200. (b) Rx = 1220.

A
m

p
li

tu
d
e

A
m

p
li

tu
d
e

1000 1200 1400 1600

0.0005

0.0010

0.0015

0.003

0.006

0.009

Rx

Figure 23. Maximum disturbance of the streamwise velocity ûmax
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condition, for F = 1.0 × 10−4 and hR = 0.1, lR = 0.4, for two different methods of disturbance
forcing. Flat-plate results are given for reference (thin line). The scaling for the simulations
with roughness and the line legend are identical to the ones in figure 20.

4.4.2. Backward facing side of the roughness

Immediately downstream of the roughness, we see a rapid change in amplitude
similar to the one along the forward facing side. The peak û-amplitude directly
behind the roughness occurs, again, inside the separation region in the same way as
observed immediately upstream of it (as, e.g., plotted in figure 22a).

The discussion in § 4.3.2 has revealed that the roughness and its adjacent flow field
are the source of an additional disturbance, mode 1–2. To demonstrate that the stable
mode 1–2 originates mostly (if not exclusively) in the region behind and close to
the roughness, the simulation with the altered disturbance strip has been repeated
for a higher roughness. Results show that the evolution behind the roughness is
independent of the stable mode 1–2 present upstream (figure 23). This observation
can only be explained if the mode 1–2 from upstream does not experience a boost in
amplitude, as otherwise a similar result as for the smaller roughness (figure 20) must
have been observable. It can be regarded as evidence that the stable mode 1–2 behind
the roughness indeed originates at the roughness.
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Downstream of the rear separation region the two roughness heights hR = 0.05 and
hR = 0.1 exhibit the opposite disturbance evolution (figure 24a): while the disturbance
amplitude strongly increases for hR = 0.1, it decreases at first for hR = 0.05. All cases
hR � 0.05 have the same qualitative behaviour (see also figure 20), i.e. the decreasing
amplitude. Heights hR = 0.1 and hR = 0.125, on the other hand, exhibit the increasing
behaviour. Interestingly, for the case with hR = 0.075, only a very weak beating can
be observed (figure 24b). Our results, therefore, suggest that the phase difference
between the stable and the unstable modes depends on the height of the roughness.

We finally note that the strength of the beating, and therefore the amplitude of
the stable mode 1–2, changes with roughness height (compare all the thick lines
in figures 20 and 24a). Similarly, the distance between locations of destructive
interference changes with the height (again, see figures 20 and 24a). This can be
explained by a height-dependent difference in phase speed between the stable mode
1–2 and the instability mode.

4.4.3. Discussion

In § 4.3.5 we have evaluated the role of the stable mode, and in § 4.4.2 we
have discussed the location of its origin. Now, the generation mechanism of the
stable mode 1–2 and the amplitude boost of the instability mode warrant a closer
inspection. Two different possibilities regarding the respective generation mechanisms
and interconnections between the disturbance modes are, therefore, discussed below.

One possibility for the generation of the stable mode 1–2 is an inversion of
the conversion mechanism of Fedorov & Khokhlov (2001). According to such a
mechanism, the conversion of a stable mode to an instability mode should take place
around the streamwise location where eigenvalues come closest in the complex plane.
This point is usually not far away from the point of matching phase velocities. Here,
the inverse conversion from the unstable mode immediately behind the roughness
to the stable mode farther downstream could occur. If we assume that that such a
conversion has taken place for instance for F = 1.0 × 10−4 and hR = 0.1, it must
have occurred upstream of Rx = 1300, as the phase velocities of both the stable and
the unstable modes diverge downstream of the roughness (figure 15b; Rx < 1350).
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A drawback of this interpretation is that it cannot easily explain the dependence
of the strength of the beat on the height of the roughness: if the stable mode 1–2
is directly caused by the instability mode, the amplitude of the stable mode should
depend on the amplitude of the generating mode. In other words, the relation of
the amplitude of the instability mode and the stable mode should remain roughly
the same. Instead, for a small roughness the beat is weak and, hence, the amplitude
of the stable mode 1–2 is much smaller than that of the instability mode, while for
the larger roughness the beat is strong, which means that both the stable and the
instability modes possess a similarly large amplitude. Moreover, we did not even
observe the regular conversion mechanism (from stable to unstable modes) to take
place far behind the roughness as detailed in § 4.3.2, which makes it an unlikely
process to occur.

Another possibility is that both the stable mode 1–2 and the instability mode are
triggered or strongly influenced by the shock. Significant fluctuations, of the order
of the boundary-layer perturbations, were found to occur along the oblique shock
behind the roughness. The origin of the perturbation of the oblique shock is probably
the density: the density perturbation at the edge of the boundary layer connects to the
shock and may cause it to oscillate. These oscillations are also visible in the pressure.
Interestingly, for a three-dimensional roughness element, Tumin (2006) found that
perturbations have large amplitudes along the Mach waves caused by the roughness.

The pressure perturbations in the free stream may, in turn, excite both the stable
mode 1–2 and the instability mode, with the latter effect leading to an amplitude
boost. We note that Ma & Zhong (2003b) argued that free-stream perturbations
can excite instability modes. As the strength of the shock depends on the height of
the roughness, a height dependence can be expected. As further evidence that the
shock is involved, simulations with different lengths of the roughness exhibited a
larger resulting far-downstream amplitude for the longer roughness (figure 25), which
we find unlikely to be explained only by the slightly larger separation regions (see
figure 4b). Instead, the differences in angle between the shock and local streamline
for the three cases may be responsible. However, further investigations are required
to clarify this.

5. Conclusions
Results from Navier–Stokes simulations of a flat-plate compressible boundary layer

with a bar-type roughness element have been reported and analysed. In particular, the
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alteration of the evolution of a convective boundary-layer disturbance by a localized
two-dimensional roughness is discussed. Physical insight was gained with the aid of
parameter variations such as height and length of the roughness, as well as disturbance
frequency. The interpretation of simulation results was aided by a local linear stability
analysis.

A separating boundary layer boosts the amplification of both first(inflectional)-
and second(acoustic)-type instability mechanisms as a result of more convectively
unstable boundary-layer profiles. This boost is concentrated at lower frequencies as
the frequency-range of the second-type instability shifts towards lower values due
to an increase in boundary-layer thickness. The overall maximum amplification rate
is found within the region of adverse-pressure gradient upstream of the roughness,
and the instability in front of the roughness is independent of the (downstream)
length of the roughness. The lower the roughness height the weaker an effect on the
instability, in terms of both the spatial expansion and the maximum amplification
rate.

Within the region of the first-type instability, numerical results of two-dimensional
instability waves exhibit a very good agreement with LST in both amplitude
functions and phase velocities even in regions of increasingly non-parallel flow,
while amplification rates are systematically underpredicted. Within the second-type
instability region, a good matching of amplification rates is observed, while deviations
in amplitude functions are visible and phase velocities are underpredicted by LST.
The Navier–Stokes simulations reveal that the stabilization observed in LST for two-
dimensional first-type instability modes is due to deficiencies in the theory likely caused
by non-parallel effects. Hence, LST predicts an incorrect trend (stabilization instead of
destabilization) for two-dimensional modes with first-type instability characteristics.
The trend for oblique (three-dimensional) modes (a destabilization) is predicted
correctly.

Downstream of the roughness, an additional disturbance is generated and interacts
with the one coming from upstream. As a result, the disturbance signal behind the
roughness exhibits a beating: constructive (and destructive) interference occurs. The
additional disturbance is a stable mode 1–2, which possesses a similar phase velocity
as the unstable mode in the vicinity of the roughness. The stable mode could be
identified based on the amplitude function associated with this stable mode, as it
possesses notable values at the wall only. Therefore, we did not feel the need to
apply a multi-mode decomposition as proposed by Tumin (2007). The shape of the
amplitude function also explains why we could clearly observe the instability mode
away from the wall in spite of the beat. Far downstream, the amplification rate of a
flat plate for the same distance from the leading edge is recovered. The stable mode
appears to cause only transient growth, as we did not find evidence that a conversion
to the instability wave takes place.

Along the roughness, the disturbance is always found to be strongly damped.
Because of this damping, the net effect for disturbances at low frequencies turns
out to be zero despite an increased amplification upstream of the roughness. At
high frequencies (second-type instability even without roughness), the net effect is
even strongly negative, i.e. the far downstream amplitude is significantly smaller than
for a flat plate. Only for frequencies that lie in the first-type instability region if no
roughness is present, but are amplified due to a second-type mechanisms in the vicinity
of the roughness, a gain in amplitude over the flat-plate case is observed. Hence, a
two-dimensional roughness element behaves as a disturbance amplifier with a limited
bandwidth, capable of filtering a range of frequencies and strongly amplifying only a
selected range.
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The generation mechanism of the stable and an amplitude boost of the unstable
mode have been discussed, and this mechanism seems to be active in the rear of the
roughness. These interactions certainly warrant further investigations.
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